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Co je faktoriál?

Připomeňme, že pro n ∈ N definujeme

n! = 1 · 2 · 3 · . . . · n.

S faktoriály se na sťredńı škole můžeme setkat nap̌ŕıklad v kombinatorice.

1! = 1

2! = 2

3! = 6

4! = 24

5! = 120

6! = 720

7! = 5 040

8! = 40 320

9! = 362 880

10! = 3 628 800

11! = 39 916 800

12! = 479 001 600

13! = 6 227 020 800

14! = 87 178 291 200

. . . . . .

Vid́ıme, že n! roste velmi rychle a je užitečné vědět, jak moc.

Jsme schopni nap̌ŕıklad jednoduše zjistit, kolik cifer má 1 000 000!?
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Základńı odhady faktoriálu

Plat́ı n! = 1 · 2 · . . . . . . · (n − 1) · n,
n! = n · (n − 1) · . . . . . . · 2 · 1.

Vynásobeńım dostaneme

(n!)2 =
(
1 · n

)
·
(
2 · (n − 1)

)
· . . . ·

(
(n − 1) · 2

)
·
(
n · 1

)
.

Každá závorka má tvar k(n − k + 1), kde k ∈ {1, . . . , n}. Nav́ıc neńı těžké
si uvědomit, že

n ≤ k(n − k + 1) ≤
(
n + 1

2

)2
.

Proto plat́ı

nn ≤ (n!)2 ≤

[(
n + 1

2

)2]n
=⇒ n

n
2 ≤ n! ≤

(
n + 1

2

)n
.
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Přesnost odhadů n
n
2 ≤ n! ≤

(
n+1
2

)n
Zkusme do právě odvozených odhadů dosadit nap̌ŕıklad n = 100.

Pak

n
n
2 = 10050 = 1,000 · 10100,
n! = 100!

.
= 9,333 · 10157,(

n + 1

2

)n
=

(
101

2

)100
.
= 2,134 · 10170.

Vid́ıme, že tyto odhady jsou poměrně dost nep̌resné.

K odvozeńı p̌resněǰśıch odhadů faktoriálu lze (jak uvid́ıme za chv́ıli) využ́ıt
metod numerické integrace.
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Integrál z nezáporné spojité funkce f
(

b∫
a

f (x) dx

)

Integrál z nezáporné spojité funkce
f si lze p̌redstavovat jako obsah
plochy pod grafem funkce f .

Velmi často se stává, že integrál
neuḿıme (nebo nechceme)
spoč́ıtat analyticky.

Potom muśıme p̌ristoupit
k numerickému výpočtu
integrálu.
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Lepš́ı odhady faktoriálu

Nejprve si všimněme, že plat́ı

ln(n!) = ln(1 · 2 · . . . · n) = ln 1 + ln 2 + . . . + ln n.

Zvolme si p̌rirozené č́ıslo n ∈ N, n ≥ 2, a pokusme se numericky spoč́ıtat

integrál z logaritmu, konkrétně
n∫
1

ln x dx .

Ihned vid́ıme, že

ln 1 + . . . + ln(n − 1) ≤
n∫

1

ln x dx ≤ ln 2 + . . . + ln n.
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ln 1 + . . . + ln(n − 1) ≤
n∫
1

ln x dx ≤ ln 2 + . . . + ln n

Je jasné, že
ln 1 + . . . + ln(n − 1) = ln((n − 1)!),

ln 2 + . . . + ln n = ln(n!).

Dále lze (pomoćı integračńı metody per-partes) ukázat, že
n∫

1

ln x dx = n ln n − n + 1 = ln
[(n

e

)n
e
]
.

Proto plat́ı (odstrańıme logaritmy)

(n − 1)! ≤
(n
e

)n
e ≤ n!.

Odtud již velmi snadno dostaneme následuj́ıćı odhady faktoriálu.(n
e

)n
e ≤ n! ≤

(n
e

)n
en.
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Přesnost odhadů
(
n
e

)n
e ≤ n! ≤

(
n
e

)n
en

Zkusme opět do odhadů dosadit n = 100. Dostaneme(n
e

)n
e

.
= 1,011 · 10157,

n!
.
= 9,333 · 10157,(n

e

)n
en

.
= 1,011 · 10159.

Vid́ıme tedy, že tentokrát jsou odhady faktoriálu mnohem p̌resněǰśı.

Nav́ıc lze tyto odhady ještě dále vylepšovat.
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Levý obrázek nám ř́ıká, že

ln 2

2
+

ln 2 + ln 3

2
+ · · ·+ ln(n − 1) + ln n

2
≤

n∫
1

ln x dx ,

ln 2 + ln 3 + · · ·+ ln(n − 1) +
1

2
ln n ≤ n ln n − n + 1,

ln

(
n!√
n

)
≤ ln

[(n
e

)n
e
]
,

(n
e

)n
e ≤ n! ≤

(n
e

)n
e
√
n.
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Ještě dokonaleǰśı formulky pro faktoriál

Stirlingův vzorec:

Pro n ∈ N plat́ı p̌ribližná rovnost

n!
.
=
(n
e

)n √
2πn.

Nav́ıc, relativńı chyba, které se během výpočtu faktoriálu dopust́ıme, se
(pro velká n) bĺıž́ı k nule.

Abychom ilustrovali p̌resnost Stirlingova vzorce, dosad’me si do něj opět
n = 100. Př́ımým výpočtem dostaneme

n!
.
= 9,333 · 10157,(n

e

)n √
2πn

.
= 9,325 · 10157.

Vylepšený Stirlingův odhad:(n
e

)n √
2πn ≤ n! ≤

(n
e

)n √
2πn e

1
12n
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n!
.
=
(
n
e

)n √
2πn

D́ıky výše uvedenému vztahu máme lepš́ı p̌redstavu o r̊ustu faktoriálu.

A ted’ poměrně jednoduše dokážeme odpovědět na otázku, kolik cifer má
1 000 000!.

Uvědomme si, že počet cifer poťrebný k zapsáńı p̌rirozeného č́ısla
(v deśıtkové soustavě) souviśı s dekadickým logaritmem tohoto č́ısla.

D́ıky p̌redchoźımu dostaneme

log10(n!)
.
= n log10

(n
e

)
+

1

2
log10(2πn).

Jednoduchým výpočtem, který bychom hravě zvládli i na obyčejné
kalkulačce, zjist́ıme, že log10(1 000 000!)

.
= 5565 708, 92.

Č́ıslo 1 000 000! má tedy 5 565 709 cifer.
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Úloha k zamyšleńı

Rozhodněte, jak se (pro velká n ∈ N) chovaj́ı posloupnosti (an) a (bn), je-li

an =
2nn!

nn
a bn =

3nn!

nn
.

Řešeńı:

Využijeme toho, že n! se (pro velká n ∈ N) chová jako
(
n
e

)n √
2πn.

Proto (pro obecné q ∈ R+) plat́ı

qnn!

nn
.
=

qn
(
n
e

)n √
2πn

nn
=
(q
e

)n √
2πn.

To znamená, že pro q ≥ e posloupnost
”
ut́ıká“ do nekonečna, zat́ımco pro

q < e posloupnost konverguje k nule.
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Náhodná procházka – formulace problému

Pohybujeme se po č́ıselné ose, p̌ričemž startujeme z počátku (bod 0).

V každém kroku se s pravděpodobnost́ı 1
2 posuneme o 1 doprava

a s pravděpodobnost́ı 1
2 o 1 doleva (můžeme si hodit minćı).

Jaká je pravděpodobnost, že se po k kroćıch (k ∈ N) ocitneme opět
v počátku? Tuto pravděpodobnost si označme P(k).

Řešeńı:

Je jasné, že pro k liché je P(k) = 0.

Pro k sudé (tzn. k = 2n, n ∈ N) si neńı těžké rozmyslet, že

P(2n) =

(2n
n

)
22n

,

nebot’ 22n je počet všech možných
”
procházek“ o 2n kroćıch a těch,

kterých zač́ınaj́ı a konč́ı ve stejném bodě, je právě
(2n
n

)
.
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Náhodná procházka . . . . . . P(2n) =
(2nn )
22n

Otázky:

Jak se (̌rádově) chová pravděpodobnost pro velký (sudý) počet krok̊u?

Jak se pravděpodobnost změńı, pokud počet krok̊u vzroste 100×?

Protože

P(2n) =

(2n
n

)
22n

=
(2n)!

22n(n!)2
,

je jasné, že poťrebujeme znát chováńı faktoriál̊u pro velká n ∈ N.

Použijeme-li nyńı Stirlingův vzorec

n!
.
=
(n
e

)n √
2πn,

dostaneme

P(2n)
.
=

(
2n
e

)2n √
2π · 2n

22n
( (

n
e

)n √
2πn

)2 =
22n
(
n
e

)2n
2
√
πn

22n
(
n
e

)2n
2πn

=
1√
πn

.
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Náhodná procházka . . . . . . P(2n)
.
= 1√

πn

Nyńı vid́ıme, že pokud počet krok̊u náhodné procházky vzroste nap̌ŕıklad
100×, klesne pravděpodobnost, že náhodná procházka zač́ıná a konč́ı ve
stejném bodě, p̌ribližně 10×.

Přesné hodnoty pravděpodobnosti:

P(10) = 0, 24609375,

P(1 000) = 0, 02522501 . . . ,

P(100 000) = 0, 00252312 . . . .

Hodnoty pravděpodobnosti źıskané p̌ribližným vzorcem:

P(10)
.
= 0, 25231325,

P(1 000)
.
= 0, 02523133,

P(100 000)
.
= 0, 00252313.
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Mohli bychom zkoumat i pravděpodobnost, že po 2n kroćıch skonč́ıme
v nějakém p̌redepsaném bodě (který nemuśı být nutně počátek).

Na následuj́ıćım obrázku jsou znázorněny pravděpodobnosti pro n = 5, tj.
pro 10 krok̊u.

Rovnice červené ǩrivky (Gaussova ǩrivka) je

P(x) =
1√
πn

e−
x2

4n .

S právě zkoumanou náhodnou procházkou úzce souviśı
tzv. Galtonova deska.
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https://youtube.com/shorts/y2xtDVjl5Uk?si=Cx4Xwxbz_oi29m-i
https://www.youtube.com/watch?v=TZs2PhHauEc&list=PLpSGvs-xLW2J_korBsN65X0N_Ac_QMuJl&index=6


Děkuji za pozornost !!!
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