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Úvod

Bayesova věta

představuje mechanismus získávání informací z dat,
opírá se o teorii pravděpodobnosti,
formulována Thomasem Bayesem (1701–1761),
k rozvoji přispěl Pierre-Simon Laplace (1749-1827).
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1 Míra
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Míra

Příklady míry v běžném smyslu:
obsah plochy,
objem tělesa,
hmotnost tělesa,
počet prvků,
cena zboží,
...
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Příklady míry: obsah plochy

Označme obsah plochy M jako S(M).

Pro libovolnou plochu M platí:

S(M) ≥ 0,
S(∅) = 0,
jestliže M = M1 ∪ M2, M1 ∩ M2 = ∅,
pak S(M) = S(M1) + S(M2).
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Příklady míry: objem tělesa

Označme objem tělesa M jako V (M).

Pro libovolné těleso M platí:

V (M) ≥ 0,
V (∅) = 0,
jestliže M = M1 ∪ M2, M1 ∩ M2 = ∅,
pak V (M) = V (M1) + V (M2).
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Příklady míry: počet prvků

Označme počet prvků množiny M jako N(M).

Pro libovolnou množinu M platí:

N(M) ≥ 0,
N(∅) = 0,
jestliže M = M1 ∪ M2, M1 ∩ M2 = ∅,
pak N(M) = N(M1) + N(M2).
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Příklady míry: cena zboží

Označme množinu jednotlivých položek v nákupním košíku
jako M a jejich celkovou cenu jako C(M).

Pro libovolnou množinu M platí:

C(M) ≥ 0,
C(∅) = 0,
jestliže M = M1 ∪ M2, M1 ∩ M2 = ∅,
pak C(M) = C(M1) + C(M2).
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Společné vlastnosti

Jaké společné vlastnosti mají uvedené příklady měr?

Je-li µ obsah plochy / objem tělesa / počet prvků / cena,
pak pro libovolnou množinu M platí:

µ(M) ≥ 0,
µ(∅) = 0,
jestliže M = M1 ∪ M2, M1 ∩ M2 = ∅, pak

µ(M) = µ(M1) + µ(M2).
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Společné vlastnosti

Jaké společné vlastnosti mají uvedené příklady měr?

Je-li µ obsah plochy / objem tělesa / počet prvků / cena,
pak pro libovolnou množinu M platí:

µ(M) ≥ 0,
µ(∅) = 0,
jestliže M = M1 ∪ M2, M1 ∩ M2 = ∅, pak

µ(M) = µ(M1) + µ(M2).
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Definice míry (konečně aditivní)

Necht’ Ω je libovolná množina a F je množina podmnožin
množiny Ω taková, že

1) Ω ∈ F ,
2) pro každou množinu M ∈ F platí Ω\M ∈ F ,
3) pro každé M1,M2 ∈ F platí M1 ∪ M2 ∈ F a M1 ∩ M2 ∈ F .

Funkci µ : F → ⟨0,+∞) ∪ {+∞}, pro kterou platí
1) µ(∅) = 0,
2) pro každé M1,M2 ∈ F , kde M1 ∩ M2 = ∅, platí

µ(M1 ∪ M2) = µ(M1) + µ(M2),
nazveme mírou na algebře množin F .
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Pravděpodobnost je míra.

Ale na jakých množinách?
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Pravděpodobnost je míra.
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Náhodné jevy jako množiny

Množina elementárních jevů Ω - množina všech možných
výsledků náhodného pokusu. Výsledkem je vždy právě jeden
elementární jev ω ∈ Ω.



Míra
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Náhodné jevy jako množiny

Množina elementárních jevů Ω - množina všech možných
výsledků náhodného pokusu. Výsledkem je vždy právě jeden
elementární jev ω ∈ Ω.

Náhodný jev A ⊂ Ω.
Náhodný jev A nastal právě tehdy, když ω ∈ A.
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Náhodný pokus - příklad

Náhodný pokus: hod šestistěnnou kostkou
Množina elementárních jevů Ω = {1, 2, 3,4, 5, 6}
Náhodný jev A . . . „Padlo prvočíslo.“
Náhodný jev B . . . „Padlo liché číslo.“

Výsledek: Padlo číslo 2 (tj. ω = 2). Jev A nastal, jev B nenastal.
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Operace s náhodnými jevy

Uvažujme náhodné jevy A,B ⊂ Ω.
Průnik jevů: A ∩ B . . . nastane A a zároveň nastane B.
Sjednocení jevů: A ∪ B . . . nastane A nebo nastane B.
Doplněk jevu: A = Ω\A . . . nenastane A.
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Operace s náhodnými jevy

Uvažujme náhodné jevy A,B ⊂ Ω.
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Operace s náhodnými jevy
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Operace s náhodnými jevy
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Pravděpodobnost - definice

Necht’
Ω je libovolná množina (množ. elementárních jevů),
F je algebra podmnožin Ω (náhodné jevy).

Pravděpodobnost

Pravděpodobnost je libovolná míra P definovaná na
množině F , pro kterou platí P(Ω) = 1.

Trojici (Ω,F ,P) nazýváme pravděpodobnostním
prostorem.
Definice udává vlastnosti pravděpodobnosti, ale nedává
předpis, jak ji kompletně určit!
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Pravděpodobnost

Bayesova věta
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Pravděpodobnost
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Pravděpodobnost - vlastnosti

Uvažujme libovolný pravděpodobnostní prostor (Ω,F ,P). Pak
pro každé náhodné jevy A,B ∈ F platí

P(A) ∈ ⟨0, 1⟩,
P(A) = 1 − P(A),
P(A ∪ B) = P(A) + P(B)− P(A ∩ B).

Jsou-li A1,A2, . . . ,An ∈ F navzájem disjunktní, pak

P(A1 ∪ A2 ∪ · · · ∪ An) = P(A1) + P(A2) + · · ·P(An).
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Příklad - autobus a vlak

Nastala sněhová kalamita a v takovém případě ze zkušenosti
víme, že

s pravděpodobností 0,4 nejede vlak,
s pravděpodobností 0,7 nejede autobus,
a s pravděpodobností 0,2 jede autobus i vlak.

Jaká je pravděpodobnost, že pojede autobus nebo vlak?
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Příklad - autobus a vlak (řešení)
Náhodné jevy: A . . . jede autobus, V . . . jede vlak

Zadáno:
P(V ) = 0, 4
P(A) = 0, 7
P(A ∩ V ) = 0, 2

Pojede autobus nebo vlak · · ·A∪V

P(A ∪ V ) = P(A) + P(V )− P(A ∩ V )

= (1 − P(A)) + (1 − P(V ))− P(A ∩ V )

= (1 − 0,7) + (1 − 0, 4)− 0, 2
= 0, 7.
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Podmíněná pravděpodobnost

Uvažujme náhodné jevy A,B, kde P(B) > 0.

Podmíněná pravděpodobnost jevu A za podmínky B

P(A|B) =
P(A ∩ B)

P(B)
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Podmíněná pravděpodobnost
Uvažujme náhodné jevy A,B, kde P(B) > 0.

Podmíněná pravděpodobnost jevu A za podmínky B

P(A|B) =
P(A ∩ B)

P(B)

P(A) vyjadřuje pr. výskytu jevu A (bez další informace).
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Podmíněná pravděpodobnost
Uvažujme náhodné jevy A,B, kde P(B) > 0.

Podmíněná pravděpodobnost jevu A za podmínky B

P(A|B) =
P(A ∩ B)

P(B)

P(A) vyjadřuje pr. výskytu jevu A (bez další informace).

P(A|B) vyjadřuje pr. jevu A, víme-li navíc, že nastal jev B .
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Podmíněná pravděpodobnost - vlastnosti

Necht’ B ∈ F je náhodný jevy takový, že P(B) > 0. Pak platí:
Pro každý jev A ∈ F : P(A|B) ≥ 0,
Jestliže A1,A2 ∈ F a A1 ∩ A2 = ∅, pak

P(A1 ∪ A2|B) = P(A1|B) + P(A2|B),

P(Ω|B) = 1.

Jinak řečeno: Pro zvolený náhodný jev B je P(·|B)
pravděpodobnost.
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Podmíněná pravděpodobnost - vlastnosti

Pro libovolné náhodné jevy A,B ∈ F , kde P(B) > 0, platí

P(A ∩ B) = P(A|B)P(B).

Jestliže navíc P(A) > 0, pak

P(A ∩ B) = P(A|B)P(B) = P(B|A)P(A).
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Příklad - autobus a vlak (pokračování)

Nastala sněhová kalamita a v takovém případě ze zkušenosti
víme, že

s pravděpodobností 0,4 nejede vlak,
s pravděpodobností 0,7 nejede autobus,
a s pravděpodobností 0,2 jede autobus i vlak.

Jaká je pravděpodobnost, že pojede autobus?

Jaká je pravděpodobnost, že pojede autobus, víme-li, že vlak
nejede?
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Příklad - autobus a vlak (pokračování)

Zadáno: P(V ) = 0, 4, P(A) = 0,7, P(A ∩ V ) = 0, 2

Pravděpodobnost, že pojede autobus:

P(A) = 1 − P(A) = 1 − 0, 7 = 0, 3.

Pravděpodobnost, že pojede autobus, víme-li, že vlak nejede:

P(A|V ) =
P(A ∩ V )

P(V )
=

P(A)− P(A ∩ V )

P(V )
=

=
0, 3 − 0, 2

0, 4
= 0,25.
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Bayesova věta
Pro náhodné jevy A,B, kde P(A) > 0 a P(B) > 0 platí

Bayesova věta

P(B|A) = P(A|B)P(B)

P(A|B)P(B) + P(A|B)P(B)
.

Důkaz:

P(B|A) =
P(B ∩ A)

P(A)
=

P(A ∩ B)

P(A)
=

=
P(A ∩ B)

P(A ∩ B) + P(A ∩ B)
=

=
P(A|B)P(B)

P(A|B)P(B) + P(A|B)P(B)
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Bayesova věta - využití

P(B|A) = P(A|B)P(B)

P(A|B)P(B) + P(A|B)P(B)

B,B . . . předmět zájmu
P(B),P(B) . . . apriorní pravděpodobnosti (počáteční
úsudek)

A . . . pozorování (nastal jev A, dodatečná informace)
P(A|B),P(A|B) . . . model pozorování (jak závisí výskyt A
na jevech B a B)
P(B|A) . . . aposteriorní pravděpodobnost (počáteční
úsudek doplněný o dodatečnou informaci)
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Bayesova věta - využití

P(B|A) = P(A|B)P(B)

P(A|B)P(B) + P(A|B)P(B)

B,B . . . předmět zájmu
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P(A|B),P(A|B) . . . model pozorování (jak závisí výskyt A
na jevech B a B)

P(B|A) . . . aposteriorní pravděpodobnost (počáteční
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Příklad - plošný test na COVID-19

Na podzim roku 2020 probíhalo plošné testování na COVID-19
pomocí antigenních testů.

Jaká je pravděpodobnost, že osoba, které vyšel pozitivní test,
byla skutečně nakažená?
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Příklad - plošný test na COVID-19

Náhodné jevy:
V . . . osoba je nakažená
T . . . antigenní test je pozitivní

P(V ) = 0, 007 . . . 1. 10. 2020 bylo v ČR cca 70000 nakažených
P(T |V ) = 0, 94 . . . senzitivita testu
P(T |V ) = 0,97 . . . specificita testu

P(V |T ) =
P(T |V )P(V )

P(T |V )P(V ) + P(T |V )P(V )
=

=
0, 94 · 0, 007

0, 94 · 0, 007 + (1 − 0, 97) · 0, 997
.
= 0,18.
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P(T |V )P(V ) + P(T |V )P(V )
=

=
0, 94 · 0, 007

0, 94 · 0, 007 + (1 − 0, 97) · 0, 997
.
= 0,18.



Míra
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Příklad - cílený test na COVID-19

Jaká se změní aposteriorní pravděpodobnost, pokud antigenní
test použijeme při cíleném testování u osob s podezřením na
COVID? 1. 10. 2020 bylo pozitivních cca 11% z osob s
podezřením na COVID.

P(V ) = 0, 11
P(T |V ) = 0, 94
P(T |V ) = 0,97

P(V |T ) =
P(T |V )P(V )

P(T |V )P(V ) + P(T |V )P(V )
=

=
0, 94 · 0, 11

0, 94 · 0, 11 + (1 − 0, 97) · 0,89
.
= 0,79.
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Bayesova věta - zobecnění pro více jevů

Uvažujme náhodné jevy A,B1, . . . ,Bn, kde P(A) > 0,
P(B1) > 0, . . . ,P(Bn) > 0 a jevy B1, . . . ,Bn jsou navzájem
disjunktní. Pro každý jev Bi pak platí

P(Bi |A) =
P(A|Bi)P(Bi)

P(A|B1)P(B1) + · · ·+ P(A|Bn)P(Bn)
.



Míra
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Odhad velikosti populace (capture-recapture)

N - neznámý (náhodný) počet jedinců v populaci
z - počet označených jedinců (při 1. odchytu)
c - počet odchycených jedinců (při 2. odchytu)
X - počet (náhodný) označených jedinců mezi c odchycenými

Náhodné jevy:
N = 0,N = 1, . . . ,N = nmax (jevy B0,B1, . . . ,Bnmax )
X = x (jev A), x je zjištěný počet označených

Apriorní pravděpodobnosti:
P(N = 0) = P(N = 1) = · · · = P(N = nmax) =

1
nmax+1
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Odhad velikosti populace (capture-recapture)

Model pozorování:

P(X = x |N = n) =

(z
x

)(n−z
c−x

)(n
c

)
Aposteriorní pravděpodobnosti:

P(N = n|X = x) =
P(X = x |N = n)P(N = n)∑nmax

m=0 P(X = x |N = m)P(N = m)
.
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