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Monte Carlo metody - Historie
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• Domácí simulace pro odhad pravděpodobnosti

náhodné veličiny – rozuměj výhry v kasinu,

• Typicky v karetních hrách,

Proč zrovna karetní hry? 

• Férová ruleta a kostky = čistě náhodné hry,

• Snadné určení pravděpodobnosti výhry,

• Karetní hry jsou z části dovedností,

• Rozdání karet je náhodné, 

• herní postup hráče nikoli.



Monte Carlo metody - Současnost
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• Soubor numerických metod pro výpočet (odhad) 

vybraných určitých integrálů, které se špatně řeší 

jiným způsobem

• MC metody jsou založeny na statistice,

Dva úhly pohledu

• Integrální,

• Simulace (pravděpodobnost),

• Ve skutečnosti jde o stejnou úlohu,

• Pouze jinak pojatou/pojmenovanou.

Obsah přednášky

• Určitý integrál,

• Obsah rovinné plochy,

• Výpočet ceny opce,

• Praktické ukázky v Pythonu.
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Integrální úhel pohledu

• Náš cíl je určit obsah* jednotlivých barevných částí,

Pravděpodobnostní úhel pohledu

• Jaká je pravděpodobnost, že bez míření trefím
šipkou modrou, zelenou, žlutou a červenou oblast? 

Klasický přístup

• Čtverec má stranu o délce 20 cm,

• Naměříme zbylé rozměry,

• Určíme obsah* jednotlivých ploch 𝑆1, 𝑆2, 𝑆3 a 𝑆4,

• Pravděpodobnost určíme poměrově, 𝑃𝑖 = Τ𝑆𝑖 𝑆 , 

• 𝑆 = 20 ∙ 20 = 400 𝑐𝑚2, 𝑖 = 1,2,3,4.

20 cm

4

3

2

1

20 cm

*Určit obsah pro obecnou křivku znamená 
   integrovat, odtud „integrální úhel pohledu“.
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Monte Carlo přístup

• Vytiskneme obrázek v libovolné velikosti,

• Náhodně do něj házíme šipky, nemíříme,

• Celkem hodíme 𝑁 šipek do terče, z toho 𝑁𝑖 šipek
v každé barevné oblasti, 𝑖 = 1, 2, 3, 4.

Praktický postup – simulace na počítači

1. Náhodný* vektor dvou spojitých veličin,

• První složka popisuje souřadnici 𝑥 ∈ −10, 10 ,

• Druhá složka popisuje souřadnici 𝑦 ∈ −10, 10 ,

• Délka vektoru 𝑁 odpovídá počtu pokusů,

• Dvojici 𝑥𝑗 , 𝑦𝑗 , 𝑗 = 1, … , 𝑁, nazýváme vzorek, 

• Máme tedy celkem 𝑁 vzorků.

4

3

2

1

𝑥

𝑦

10−10

10

−10

*Každé číslo z intervalu [−10, 10] má stejnou
  šanci být vybráno ⇒ tzv. uniformní rozdělení 
  pravděpodobnosti na intervalu −10, 10 .
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Monte Carlo určení obsahu ploch 𝑺𝟏,𝟐,𝟑,𝟒

2.    Známe celkový obsah 𝑆 = σ 𝑆𝑖 = 400 𝑐𝑚2

• Označme 𝑃𝑖 = 𝑆𝑖/𝑆, pak 

• σ 𝑃𝑖 =
𝑆1

𝑆
+

𝑆2

𝑆
+

𝑆3

𝑆
+

𝑆4

𝑆
=

𝑆1+𝑆2+𝑆3+𝑆4

𝑆
= 1,

• ∀𝑖: 𝑃𝑖 ≥ 0, obsah nemůže být záporný,

• Funkce 𝑃 představuje tzv. diskrétní distribuci,

• 𝑃 𝑖  má definiční obor 𝐷𝑃 = {1, 2, 3, 4},

3. Ohodnocení vzorků pro jednu sérii 𝑵 vzorků

• Zavedeme čtyři součty 𝐹1, 𝐹2, 𝐹3 a 𝐹4 indexově příslušné 

barevným oblastem. Všechny součty inicializujeme 

počáteční hodnotou 0.

• Každý vzorek 𝑥𝑗 , 𝑦𝑗 , 𝑗 = 1, … , 𝑁 představuje bod v obrázku 

– podle toho, do které oblasti padne, přičteme jedničku do 

odpovídající sumy 𝐹𝑖. 

• Po zpracování 𝑁 vzorků získáme

𝑷𝒊 =
𝑭𝒊

𝑵
 ⇒  𝑺𝒊 = 𝑷𝒊𝑺 = 𝟒𝟎𝟎𝑷𝒊 𝒄𝒎𝟐 .
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Monte Carlo určení obsahu ploch 𝑺𝟏,𝟐,𝟑,𝟒

• Pro střední hodnotu obsahů 𝑆𝑖  a příslunou 

směrodatnou odchylku obsahů 𝜎 𝑆𝑖  platí

𝑆𝑖 ± 𝜎 𝑆𝑖 ≅ ഥ𝑆𝑖 ±
𝑆𝑖

2 − ഥ𝑆𝑖
2

𝑀
.

4.    Statistické zpracování dat pro

• Celý pokus (měření) opakujeme 𝑴 krát,

• Nechť 𝑆𝑖𝑗 , 𝑖 = 1,2,3,4, 𝑗 = 1, … , 𝑀, značí obsah

plochy 𝑆𝑖  v rámci 𝑗-tého měření. Určíme

• Výběrový průměr (z 𝑀 naměřených hodnot)

ഥ𝑆𝑖 ≔
1

𝑀
෍

𝑗=1

𝑀

𝑆𝑖𝑗  ,

• Výběrový rozptyl 

𝑠2 𝑆𝑖 ≔
𝑀

𝑀 − 1
𝑆𝑖

2 − ഥ𝑆𝑖
2 .

Populační charakteristiky Výběrové charakteristiky

𝑆𝑖 Střední hodnota ഥ𝑆𝑖 Výběrový průměr

𝜎2 𝑆𝑖 Rozptyl 𝑠2 𝑆𝑖 Výběrový rozptyl

𝜎 𝑆𝑖
Směrodatná 

odchylka
𝑠 𝑆𝑖

Výběrová 
odchylka
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Monte Carlo určení obsahu ploch 𝑺𝟏,𝟐,𝟑,𝟒

5.    Výsledky numerického experimentu pro 𝑴 = 𝟏𝟎 (tj. 𝟏𝟎 sérií měření)

𝑵 𝑺𝟏 𝒄𝒎𝟐 𝑺𝟐 𝒄𝒎𝟐 𝑺𝟑 𝒄𝒎𝟐 𝑺𝟒 𝒄𝒎𝟐

− 𝟏𝟒𝟓, 𝟓𝟑𝟏 𝟏𝟒𝟏, 𝟑𝟕𝟐 𝟖𝟒, 𝟖𝟐𝟑𝟎 𝟐𝟖, 𝟐𝟕𝟒𝟑

101 168,000 ± 59,171 136,000 ± 55,884 64,000 ± 47,233 32,000 ± 33,093

102 133,600 ± 18,243 149,600 ± 18,232 85,600 ± 15,232 31,200 ± 9,503

103 144,800 ± 6,438 141,200 ± 6,830 85,040 ± 5,189 29,960 ± 2,925

104 145,680 ± 1,870 140,936 ± 1,914 85,060 ± 1,594 28,324 ± 0,986

105 145,530 ± 0,785 141,513 ± 0,5685 84,594 ± 0,344 28,362 ± 0,365

106 145,551 ± 0,234 141,323 ± 0,140 84,869 ± 0,168 28,278 ± 0,081

107 145,526 ± 0,077 141,388 ± 0,067 84,807 ± 0,046 28,280 ± 0,037

Přesnější výsledek znamená vyšší výpočetní náročnost

Uvedený výpočet lze velice dobře paralelizovat



Numerická integrace MC
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• Chceme spočítat určitý integrál*

𝑆 = න

𝜋

5𝜋

𝑓 𝑥  𝑑𝑥 = න

𝜋

5𝜋
sin 𝑥

𝑥
 𝑑𝑥,

• Tj. orientovaný obsah vybarvené plochy,

• Problém: Integrand nabývá záporných hodnot,

• Řešení: Posun integrandu o konstantu tak, aby

∀𝑥 ∈ 𝜋, 5𝜋 ∶
sin 𝑥

𝑥
+ 𝑐 ≥ 0,

*Nelze vyjádřit analyticky (vyšší transcendentní funkce).
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• Zvolme například 𝑐 = 0.3, pak

𝑆 = න

𝜋

5𝜋

𝑓 𝑥  𝑑𝑥 = න

𝜋

5𝜋
sin 𝑥

𝑥
 𝑑𝑥 ,

𝑆new = 𝑆 + න

𝜋

5𝜋

𝑐 𝑑𝑥 = 𝑆 + න

𝜋

5𝜋

0.3 𝑑𝑥 = 𝑆 + 0.3𝑥 𝜋
5𝜋 = 𝑆 + 0.3 5𝜋 − 𝜋 = 𝑆 + 1.2𝜋,

න

𝜋

5𝜋
sin 𝑥

𝑥
 𝑑𝑥 + න

𝜋

5𝜋

0.3 𝑑𝑥 = න

𝜋

5𝜋
sin 𝑥

𝑥
+ 0.3 𝑑𝑥 = 𝑆new

⇒

𝑆 = 𝑆new − 1.2𝜋 = න

𝜋

5𝜋
sin 𝑥

𝑥
+ 0.3 𝑑𝑥 − 1.2𝜋.
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• Určitý integrál 

𝑆new = න

𝜋

5𝜋
sin 𝑥

𝑥
+ 0.3 𝑑𝑥

      Vypočteme metodou Monte Carlo,

• Zvolme

𝑆tot = 4𝜋 ∙ 0.6 = 2.4𝜋,

• Pak pro 𝑁 vzorků získáme

• Kde 𝐹green značí počet vzorků, které „padly“ do zelené oblasti.

𝑆new

𝑆tot
=

𝐹green

𝑁
 ⇒  𝑆new = 𝑆tot

𝐹green

𝑁
 ⇒  𝑆 = 𝑆new − 1.2𝜋 = 𝑆tot

𝐹green

𝑁
− 1.2𝜋,
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• Minulý integrál by šel numericky dobře určit pomocí
lichoběžníkové metody,

• Ale co integrály

𝑆 𝑡 = න

0

𝑡

sin 𝑣2 𝑑𝑣 , 𝐶 𝑡 = න

0

𝑡

cos 𝑣2 𝑑𝑣 ?

• Jedná se Fresnelovy integrály, které opět nelze vyjádřit 
analyticky (vyšší transcendentní funkce),

• Zde numerická aproximace lichoběžníkovou metodou
s ekvidistantním dělením intervalu je nepoužitelná,

• Řešením je Monte Carlo integrace.
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Fresnelovy integrály a Eulerova spirála

• Nechť (Normalizované Fresnelovy integrály)

𝑆 𝑡 = න

0

𝑡

sin
𝜋𝑣2

2
𝑑𝑣 , 𝐶 𝑡 = න

0

𝑡

cos
𝜋𝑣2

2
𝑑𝑣 ,

• Uvažujme parametrickou křivku

• 𝑥 𝑡 = 𝐶 𝑡 ,

• 𝑦 𝑡 = 𝑆 𝑡 .

• Uvedená křivka se nazývá Eulerova spirála,

• Délka křivky 𝑙 0 → 𝑡 = 𝑡,

• Projektování spojek dálnic a železnic,

• Smyčky horské dráhy.
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Fresnelovy integrály a Eulerova spirála



Výpočet ceny opce
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• Opce je právo něco (akcie, komodity) koupit nebo prodat 

• V přesně daný okamžik v budoucnu (expirace opce),

• Za předem danou cenu (strike price, realizační cena),

• Vztahuje se vždy na konkrétní množství komodity,

• Právo nákupu neznamená povinnost nákupu.

• Call opce je právo nákupu za danou cenu,

• Protistrana musí prodat,

• Put opce je právo prodeje za danou cenu,

• Protistrana musí koupit,

• Kryté vs. nekryté (spekulativní) opce.

• Vypisování opcí je licencovaná činnost,

• Vysoce rizikové,

• Kupovat opce může prakticky kdokoli poučený,

• Rizikové.

• Nákup akcií a komodit odpovídá sázce na jejich

dlouhodobý růst (matematicky střední hodnota 

ziskovosti),

• Nákup opcí odpovídá sázce na jejich krátkodobý

růst (call) nebo pokles (put), vychází z volatility 

(matematicky směrodatná odchylka ziskovosti),
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• Call opce (sázka na budoucí růst)

• Aktuální cena akcie: 𝑆0 = 40 €,

• Garantovaná nákupní cena: 𝐾 = 42 €, 

• Počet akcií: 𝑁 = 100,

• Doba opce jeden rok: 𝑇 = 1,

• Cena opce: 𝑃 = 300 €, tj. 𝑝 = 3€/akcie,

• Aktuální cena akcie 𝑺𝑻 v čase expirace opce je

nižší nebo stejná než garantovaná nákupní cena 𝑲

• Opci nevyužiji,

• Přicházím o 300 €. 

Ukázka významu opcí

• Aktuální cena 𝑺𝑻 je vyšší než cena 𝑲 daná opcí

                                ⇒ Opci využiji

• Moje obchodní bilance je dána vztahem

𝑍 = 𝑁 𝑆𝑇 − 𝐾 − 𝑃 = 100 𝑆𝑇 − 42 − 300,

• 𝑆𝑇 = 44 € ⇒ 𝑍 = 100 44 − 42 − 300 = −100€,

• 𝑆𝑇 = 45 € ⇒ 𝑍 = 100 45 − 42 − 300 = 0€,

• 𝑆𝑇 = 46 € ⇒ 𝑍 = 100 46 − 42 − 300 = +100€,

• 𝑆𝑇 = 55 € ⇒ 𝑍 = 100 55 − 42 − 300 = +1000€,

• Maximální prodělek je dán cenou opce, maximální 

zisk je teoretický neomezený. 

• Numusím disponovat cenou akcií. 
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• Opčně nemusíme kupovat nebo prodávat pouze akcie,

• Opce lze použít jako pojistku proti výkyvům cen

• Obchodovatelných komodit,

• Zahraničních měn.

• To hlavní se ukrývá v ceně opce!

• Začněme několika termíny

• Drift 𝒓 je střední hodnota relativního výnosu,

• Za dané období (30 dní, 90 dní, rok,…),

• Funguje podobně jako roční úroková sazba,

• Dominuje z dlouhodobého hlediska,

• Dlouhodobé opce (rok a výše),

Výpočet ceny opce

• Volatilita 𝝈 je směrodatná odchylka driftu 𝑟

• Za stejné období jako drift 𝑟,

• 1 obchodní rok má přibližně 252 dní,

𝜎𝑑𝑒𝑛 =
𝜎𝑟𝑜𝑘

252

• Dominuje z krátkodobého hlediska,

• Krátkodobé opce (dny a měsíce),

• Pro drift i volatilitu společné platí

• Udávají se v procentech %,

• Při výpočtech dosadíme Τ𝑟, 𝜎 100,

• Pro minulost vypočteme,

• Pro budoucnost odhadujeme.
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• Historický výnos můžeme matematický vyjádřit

𝑧 = 𝑟 ± 𝜎.

• Budoucí predikce (Brownův model)

𝑆𝑇 = 𝑆0 𝑒
𝑟−

1
2𝜎2 𝑇

drift

𝑒𝜎𝑍 𝑇

volatilita

,

• 𝒁 je náhodné číslo z normovaného normálního rozdělení

• 𝑁 0,1 , 𝜇 = 0, 𝜎 = 𝜎2 = 1,

• Simuluje náhodné chování trhu pro jeden scénář,

• 𝑻 je čas do expirace opce, 

• 𝑺𝟎 je aktuální cena akcie,

• 𝑺𝑻 je cena očekávaná v momentě expirace opce,

Výpočet ceny opce

• Chování trhu simulujeme pro různé náhodné scénaře,

• Zastoupeno náhodnou volbou 𝑍,

• Celkový počet simulací je 𝑛,

• Chyba klesá s rostoucím počtem simulací 
1

𝑛
,

• Zadání příkladu

• 𝑆0 = 100 € (aktuální cena),

• 𝐾 = 105 € (realizační cena),

• 𝑇 = 0.25 (90 dní),

• 𝑟 = 0.05 (drift),

• 𝜎 = 0.20 (volatilita),

• 𝑛 = 100000 = 106 (počet simulací).
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Výpočet ceny opce

import numpy as np

# Parametry
S0 = 100          # Aktuální cena akcie
K = 105           # Strike cena (realizační cena)
T = 0.25 # Čas do splatnosti (3 měsíce = 0.25 roku)
r = 0.05 # Roční Drift(5 %)
sigma = 0.20      # Roční volatilita (20 %)
n_simulations = 100000

# 1. Generování náhodných šoků
z = np.random.standard_normal(n_simulations)

# 2. Výpočet koncových cen ST
# Všimni si, že T figuruje v driftu i v části s volatilitou
ST = S0 * np.exp((r - 0.5 * sigma**2) * T + sigma * np.sqrt(T) * z)

# 3. Výpočet výplaty (payoff)
# Výplata je max(S_T - K, 0)
payoffs = np.maximum(ST - K, 0)

# 4. Průměr a diskontování k dnešku
option_price = np.exp(-r * T) * np.mean(payoffs)

print(f"Odhadovaná cena evropské call opce (T=0.25): {option_price:.2f} €")

Opce roční, 𝒓 = 𝟎. 𝟎𝟓, 𝝈 = 𝟎. 𝟐𝟎

• 8.03 € /akcie,

Opce roční, 𝒓 = 𝟎. 𝟎𝟓, 𝝈 = 𝟎, 𝟓𝟎

• 19.85 € /akcie,

Opce roční, 𝒓 = 𝟎. 𝟎𝟐, 𝝈 = 𝟎, 𝟏𝟎

• 2.75 € /akcie,

Opce 90 dní, 𝒓 = 𝟎. 𝟎𝟓, 𝝈 = 𝟎. 𝟐𝟎

• 2.46 € /akcie,

Opce 90 dní, 𝒓 = 𝟎. 𝟎𝟓, 𝝈 = 𝟎, 𝟓𝟎

• 8.40 € /akcie,

Opce 90 dní, 𝒓 = 𝟎. 𝟎𝟐, 𝝈 = 𝟎, 𝟏𝟎

• 0.54 € /akcie,

*Kód generoval Google Gemini.
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Srovnání roční a 90-denní opce, 

𝒓 = 𝟎. 𝟎𝟓, 𝝈 = 𝟎. 𝟐𝟎
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Pojištění kurzu EUR/CZK

• Pojišťujeme cenu EUR vůči CZK,

• Kladný drift 𝑟 > 0 znamená, 

že cena eura v korunách rostla,

• Jak zjistit drift a volatilitu za poslední rok?

• Volatilita 𝜎 = 2.58 %,

• Roční drift 𝑟 = −3.91 %,

• 𝑆0= 24.264099 CZK,

• Dosadíme do předchozího kódu,

• Opce roční 𝑲 = 𝑺𝟎:  0.02 CZK/1€,

• Opce 90 dní 𝑲 = 𝑺𝟎:  0.04 CZK/1€.

import yfinance as yf
import numpy as np
import pandas as pd

# 1. Stažení dat pro Euro vůči Koruně za poslední rok
ticker = "EURCZK=X"
data = yf.download(ticker, period="1y")

# 2. Výpočet denních logaritmických výnosů
data['Returns'] = np.log(data['Close'] / data['Close'].shift(1))

# 3. Výpočet roční volatility
# Směrodatná odchylka denních výnosů vynásobená odmocninou z obchodních dnů
daily_vol = data['Returns'].std()
annual_vol = daily_vol * np.sqrt(252)

# 4. Výpočet ročního driftu
# Průměrný denní výnos vynásobený 252 dny
annual_drift = data['Returns'].mean() * 252

print(f"--- Analýza EUR/CZK za poslední rok ---")
print(f"Roční volatilita (sigma): {annual_vol*100:.2f} %")
print(f"Roční drift (mu):         {annual_drift*100:.2f} %")
print(f"Aktuální kurz (poslední): {data['Close'].iloc[-1]:.2f} CZK/EUR")
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Generátory pseudonáhodných čísel

• Rádi bychom generovali zcela náhodná čísla a jejich posloupnosti,

• Z důvodu ověření a práce s výsledky navíc požadujeme opakovatelnost vygenerované 
posloupnosti čísel. To znamená, že při opakovaném spuštění generátoru se stejným 
nastavením získáme vždy totožnou posloupnost,

• Fyzikální generátory náhodných čísel nejsou vhodné – generování není opakovatelné,

• Deterministické algoritmy generují tzv. pseudonáhodná čísla,

• Požadujeme minimální korelaci mezi vygenerovanými posloupnostmi čísel (pro různá nastavení generátoru),

• Viz příklad – Monte Carlo 2D integrace – pokud náhodnost a tím i rozmístění generovaných dvojic (𝑥, 𝑦) 
nebude náhodná (body budou více padat do určité části obrázku), získáme zkreslený odhad hustoty 
pravděpodobnosti a tím i nepřesný odhad výsledku. 
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Generátory náhodných čísel v 1D

• Uvažujme uniformní hustotu pravděpodobnosti 𝑓(𝑥) na intervalu 0,1 . Potřebujeme vygenerovat posloupnost 𝑁 
vzorků z tohoto intervalu.

• Lineární kongruentní generátor LCG

1.  Zvolme celé číslo 𝒏𝟎 ≥ 𝟎, pak

2.  𝒏𝒊+𝟏 = 𝑎𝑛𝑖 + 𝑐  mod 𝑚, 𝑎 > 1, 𝑐, 𝑚 jsou celá čísla – zřejmě 0 ≤ 𝑛𝑖 < 𝑚,

• Číslo 𝑎 se nazývá násobitel, 𝑐 přírůstek. Číslo 𝒎 nazýváme modulo a určuje horní rozsah generátoru,

3.  Náhodné čísla získáme ve tvaru 𝒙𝒊 = 𝒏𝒊/𝒎.

• Multiplikativní kongruentní (lineární) generátor MCG (MLCG)

• Volbou 𝑐 ≡ 0 a dosazením do LCG získáme 𝒏𝒊+𝟏 = 𝑎𝑛𝑖  mod 𝑚, 𝒏𝟎 > 𝟎.
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Rozsah a zrnitost generátoru MCG (MLCG)

• Rozsah generátoru udává, jak dlouhou posloupnost náhodných čísel umí vygenerovat, 

než se tato začne opakovat. Rozsah generátoru MCG je nejvýše roven číslu 𝑚.

• Zrnitost generátoru udává, jak hustě umí generátor zaplnit požadovaný interval 0,1 . 

Maximální potřebný počet čísel je dán podílem délky intervalu a rozlišením počítačové 

aritmetiky 𝜀, například přesnost datového typu 𝑑𝑜𝑢𝑏𝑙𝑒 je 𝜀 = 10−15. Pak

• 𝑀𝑚𝑎𝑥 = 1/10−15 = 1015,

• Zrnitost můžeme relativně definovat jako 𝑍𝑟𝑒𝑙 = max
𝑀𝑚𝑎𝑥−𝑀

𝑀𝑚𝑎𝑥
, 0 ,

• kde 𝑀 je rozsah generátoru.
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Parametry generátorů a prostory vyšších dimenzí
• Jak zvolit parametry 𝒎 a 𝒂? Pro parametr 𝑚 máme dvě možnosti. Varianta 𝒎 = 𝟐𝜶 je 

strojově optimální → realizace modulo pouhým bitovým posunem. 𝑀 = 𝑚/4 = 2𝛼−2

pro 𝑎 mod 8 = 3 nebo 𝑎 mod 8 = 5, tedy 𝑎 = 3 + 8𝑝 nebo 𝑎 = 5 + 8𝑝, 𝑝 ≥ 0. 

• Co prvočísla? Druhou možností je zvolit za 𝑚 dosti velké prvočíslo. Velká prvočísla 
se hledají ve tvaru 𝑝 = 2𝛼 − 1. Volba 𝑚 = 𝑝 není strojově optimální, má však také
své výhody – tou hlavní je nižší korelační koeficient

• Transformace na interval 𝑎, 𝑏  → lineární transformace 𝑥𝑖 = 𝑎 + ො𝑥𝑖(𝑏 − 𝑎)

• Transformace pro neuniformní rozdělení → metody využívají inverzní kumulativní
distribuční funkci 𝐹−1(𝑥) včetně tabelovaných hodnot (v případě složitého výpočtu). 

• Pro prostory vyšší dimenze, tedy 𝑑 ≥ 2, generujeme buď 𝑑 jednodimenzionálních 
posloupností (SoA – Structure of Arrays), nebo postupně v cyklech délky 𝑑 plníme 𝑖-té 
složky všech vektorů (AoS – Arrays of Structure). SoA je mnohem výkonnější. 
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