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Abstract. We describe the application of two global optimization methods, namely of genetic
and random search type algorithms in shape optimization. When the so-called fictitious domain
approaches are used for the numerical realization of state problems, the resulting minimized function
is non-differentiable and stair-wise, in general. Such complicated behaviour excludes the use of clas-
sical local methods. Specific modifications of the above-mentioned global methods for our class of
problems are described. Numerical results of several model examples computed by different variants
of genetic and random search type algorithms are discussed.
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1. Introduction

The aim of this paper is to show how genetic and stochastic type global optimiza-
tion methods may be helpful in the numerical realization of optimal shape design
problems. A traditional way how shape optimization problems are realized is based
on the so calledboundary variation technique. This technique, besides of advant-
ages has also some drawbacks. One of the most serious ones is the fact that the
inner optimization level (i.e. the numerical realization of state problems) is not too
efficient. One of possible cures to increase the efficiency is to use the so called
fictitious domain solvers(FDS’s), by means of which state problems can be solved
very quickly. As usually, we have to pay for that. The use of FDS’s increases the
efficiency of the inner optimization level, but (unfortunately) it gives rise to certain
pathologies of minimized functions, excluding the use of local optimization meth-
ods. A natural idea arises, namely to combine FDS’s (inner level) together with
global optimization methods (outer level). The main goal of the paper is to present
a class of global optimization methods which can be used with the succes in such
a type of optimization problems.
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The paper is organized as follows: in Section 2 we recall an abstract formulation
of a class of optimal shape design problems and their approximations. Section 3
gives a brief survey of two types of fictitious domain methods, based on the duality
and the optimal control approach, respectively. We present their finite element
approximations and discuss properties of finite element solutions which play the
substantional role in the optimization process. In Section 4 two global optimiza-
tion methods are mentioned, namelya genetic algorithmandthe modified control
random searchapproach. Their specific modifications, important for the numer-
ical realization of our class of problems are presented. Finally, Section 5 presents
and compares the results of several model examples computed by using different
versions of above mentioned methods.

2. Abstract Setting of Optimal Shape Design Problems and Their
Approximations

In practice we often meet problems, in which the shape of a structure is one of the
most decisive factors for the quality of the final product (automobile, aerospace
industry, . . . ). Thus it is not surprising that optimal control problems in which
the shape is one of control variables, attracted the interest of many applied math-
ematicians and engineers. Since shape optimization can be viewed to be a special
branch of the optimal control theory, its abstract setting is very similar to other
optimization problems. A large class of optimal shape design problems can be
stated as follows:

(
P
)  Find�∗ ∈ O such that

J
(
�∗, u(�∗)

) = min
�∈O J

(
�,u(�)

)
,

where� is a domain, playing the role of thecontrol variablebelonging to a family
O of admissible domainsin Rm. Further,u(�) is a solution of astate problem(
P (�)

)
, assumed to be a function of�. Finally, J is a cost functional, the ex-

plicit choice of which depends on optimization targets. Domain�∗ (if it exists)
will be called anoptimal one. The existence of solutions to

(
P
)

is now very well
established (see Pironneau 1984; Haslinger & Neittaanmäki 1996).

To be able to solve
(
P
)

numerically, one has to pass to its approximation. Firstly,
the family O of admissible domains is replaced by another family, denoted by
Oh, whose all elements (domains) are determined by the same, finite number of
parameters (Oh contains domains with spline boundaries, e.g.). Thus any domain
�h ∈ Oh can be uniquely described by a vectorα = (α1, . . . , αq) ∈ Rq called the
vector ofdiscrete design variables. Using this concept, one can introduce the set
U ⊆ Rq and the isomorphismTD : Oh ↔ U as follows:

TD(�h) = α, �h ∈ Oh,

TD(Oh) = U,
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whereα ∈ Rq is the vector of the discrete design variables, describing�h. The
state problem

(
P (�)

)
will be approximated by using finite elements, e.g. Its fi-

nite element approximation will be denoted by
(
P (�h)

)
h

and the corresponding
solution byuh(�h), in what follows.

Theapproximation
(
P
)
h

of
(
P
)

now reads as follows:

(
P
)
h

 Find�∗h ∈ Oh such that

J
(
�∗h, uh(�

∗
h)
) = min

�h∈Oh
J
(
�h, uh(�h)

)
.

Under reasonable assumptions one can prove the relation between solutions of
(
P
)

and
(
P
)
h
, whenh→ 0+ (see Haslinger & Neittaanmäki 1996).

Standard optimization methods used for solving
(
P
)
h

are based on the construc-

tion of a minimizing sequence
{
�
(k)
h

}∞
k=1, i.e. a sequence satisfying

J
(
�
(k+1)
h , uh(�

(k+1)
h )

)
6 J

(
�
(k)
h , uh(�

(k)
h )
)
, k = 0,1, . . . . (2.1)

To find such a sequence, the boundary variation technique uses the method of
successive deformations of the previous shape:

�
(k+1)
h = F (k)

h (�
(k)
h ), k = 0,1, . . . ,

whereF (k)
h : Rm → Rm is an one-to-one continuous mapping chosen in such a

way that (2.1) is satisfied.
Now let state problem

(
P (�)

)
be linear and let the standard finite element

approach be used for getting
(
P (�h)

)
h
. Then the algebraic form of

(
P (�h)

)
h

leads to the following linear algebraic system:

A(α)u(α) = F(α), (2.2)

whereA is thestiffness matrixandF is theload vector. Both,A andF depend on the
vector of the discrete design variables. The vectoru(α) ∈ Rn being the solution of
(2.2) is termed thenodal value vector. As usually, one can define the isomorphism
TS associating with the finite element solutionuh(�h) its nodal value vectoru(α):

TS
(
uh(�h)

) = u(α)

andu(α) ∈ Rn solves (2.2).
The algebraic representation of

(
P
)
h

now reads as follows (h > 0 fixed):

(EP)
 Findα∗ ∈ U such that

J
(
α∗,u(α∗)

) = min
α∈U J

(
α,u(α)

)
,

with u(α) being the solution of (2.2) and

J
(
α,u(α)

) ≡ J (T −1
D α,T −1

S u(α)
)
,
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where the symbolsT −1
D , T −1

S denote the inverse mappings toTD, TS , respectively.(EP) is anon-linear mathematical programming problem, in general. From its form,
the main shortcomings of such a formulation are readily seen: in order to solve
(2.2), one has to update the stiffness matrixA and the load vectorF after any
change ofα. This, among others, requires to construct a new partition of any new
configuration. The whole procedure is repeated many times, after any change of
the geometry of�h.

In order to increase the efficiency of the inner level, we propose to use FDS’s
as a tool for the numerical realization of

(
P (�h)

)
h
. As we shall see in the next

section, fictitious domain approaches enable us to perform all computations on a
fixeddomain�̂ and on afixedpartitionR̂h of �̂, which are completely independent
on the geometry of�. As a result, the stiffness matrixA will not dependon the
vector of discrete design variables.

3. Fictitious Domain Methods and Their Use in Shape Optimization

The idea of any fictitious domain approach is the same: let us have an elliptic
problem

(
P
) {

Au = f in �

+b.c. on ∂�,

where� ⊂ R2 is a domain, possibly with a complicated shape. We plug� into a
new domain�̂ (termed thefictitiousone), having a simple shape (a rectangle, e.g.).
Now we define a new problem

(
P̂
)

in �̂:

(
P̂
) {

Âû = f̂ in �̂

+b.c. on ∂�̂.(
P̂
)

has to be chosen in such a way that the following requirement concerning its
solutionû is satisfied:the restrictionû |� gives a solutionto

(
P
)
. Thus instead of(

P
)
, we solve

(
P̂
)
. The gain is obvious: sincê� has a simple shape, there is no

problem to construct specific regular partitions of�̂ into finite elements. Moreover,
such partitions generate special stiffness matrices enabling us to use fast solvers to
get the solution of the corresponding system. Below we present two ways, how the
auxiliary problem on�̂, fulfilling the above mentioned requirement can be defined.

3.1. DUALITY APPROACH

Here we restrict ourselves to a homogeneous Dirichlet boundary value problem for
the Laplace equation, whose weak form reads as follows:
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(
P
) {

Findu ∈ H 1
0 (�) such that∫

�
gradu · gradϕ dx = ∫

�
f ϕ dx ∀ϕ ∈ H 1

0 (�),

with f ∈ L2(�) given. The symbolH 1(�) stands for the space of functions, which
together with their first derivatives are square integrable in�, i.e. they are elements
of L2(�). The spaceH 1

0 (�) contains all functions fromH 1(�) vanishing on∂�.
Let �̂ ⊃ � be a fictitious domain and denote bŷV = H 1

0 (�̂). Problem
(
P
)

will be now replaced by the followingsaddle-point type formulation:

(
P̂
) 

Find (û, λ) ∈ V̂ ×3 such that∫
�̂

gradû · gradϕ dx = ∫
�̂
f̃ ϕ dx+ < λ, ϕ > ∀ϕ ∈ V̂

< µ, û >= 0 ∀µ ∈ 3,
where3 is a space of Lagrange multipliers being in duality denoted by<, > with
V̂ . The symbolf̃ : �̂→ R1, f̃ ∈ L2(�̂) is an extension off from� onto�̂.

Next we shall consider two types of3:

(i) 3 is the dual to the trace space on∂� of functions fromV̂ , i.e.3 = H−1/2(∂�)

(the boundary Lagrange multiplier technique);
(ii) 3 is the dual to the space of all restrictions to4 ≡ �̂ \ � of functions from

V̂ , i.e.3 = (V̂ |4)′ (the distributed Lagrange multiplier technique).

It is easy to prove that with3 given by (i) or (ii), problem
(
P̂
)

has a unique
solution(û, λ) and the restriction̂u |� solves

(
P
)
. For details we refer to Haslinger

& Klarbring (1995), Tomas (1997) and Haslinger, MaAıtre & Tomas (1998).

REMARK 3.1 The Lagrange multiplierλ can be interpreted as a fictitious force
which has to be applied inω in order to getu ≡ 0 in ω. The setω is equal to∂�,
4 for 3 given by (i), (ii), respectively.

Let V̂h,3H be finite dimensional subspaces ofV̂ and3, respectively. Then the
approximationof

(
P̂
)

reads as follows:

(
P̂
)
hH



Find (ûh, λH ) ∈ V̂h ×3H such that∫
�̂

gradûh · gradϕh dx =
∫
�̂
f̃ ϕh dx + [λH , ϕh]

∀ϕh ∈ V̂h;
[µH , ûh] = 0 ∀µH ∈ 3H,

where[ , ] stands for the duality between̂Vh and3H . Below we briefly describe the
construction ofV̂h and3H which will be used in Section 5. We restrict ourselves
to the plane case when̂� is a sufficiently large rectangle containing�.
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Let R̂h be a rectangulation of̂�, i.e. �̂ is the union of a finite number of rect-
anglesKi, i = 1, . . . , q having in common a whole side or a vertex at most.
Moreover, the diameter of eachKi ∈ R̂h does not exceedh. Then V̂h is the
space of allcontinuous piecewise bilinear functionsover R̂h vanishing on∂�̂.
The definition of3H depends on the type of3.

Let3 be given by (i). By �H we denote apolygonal approximationof �, i.e.
∂�H is the union of a finite number of segmentsAiAi+1, i = 1, . . . , m (Am+1 ≡
A1), whereAi are the vertices of�H placed on∂� and such that the length of
anyAiAi+1 is less or equal thanH . Then3H is the space of functions defined on
∂�H which are constant on anyAiAi+1, i = 1 . . . , m. The duality pairing[ , ] is
represented by theL2(∂�H)-scalar product.

Let 3 be given by (ii). Denote byR̂H another rectangulation of̂� such that
R̂H ⊆ R̂h, i.e. any element ofR̂H can be written as the union of a finite number
of elements fromR̂h. By V̂H we denote the space of all continuous, piecewise

bilinear functions overR̂H vanishing on∂�̂. Then3H

def≡ V̂H |4 and the duality
pairing [ , ] is realized by theL2(4)-scalar product.

With these choices of̂Vh and3H , problem
(
P̂
)
hH

has a unique solution(ûh, λH )
provided that the ratioH/h is sufficiently large in the case of3 given by (i). If 3 is
given by (ii) no such restriction is needed. For details we refer again to Haslinger &
Klarbring (1995) and Haslinger, MaAıtre & Tomas (1998). The matrix representation
of
(
P̂
)
hH

leads to the following typical saddle-point formulation:(
A BT

B O

)(
u
λ

)
=
(

F
0

)
, (3.1)

whereA is thestiffness matrix, B is the so-calledkinematic transformationmatrix,
F is the load vector andu, λ are the vectors of the nodal values ofûh, λH . Let us
recall that the elementsbij of the matrixB are given by

bij =
∫

AiAi+1

ϕj ds, i = 1, . . . , m, j = 1, . . . , n

in the case of the boundary Lagrange multipliers or by

bij =
∫
4
ψiϕj dx, i = 1, . . . , m, j = 1, . . . , n

in the case of the distributed Lagrange multipliers. Here{ϕj }nj=1, {ψi}mi=1 are basis

functions ofV̂h, V̂H |4, respectively. It is important to notice that the only inform-
ation on the geometry of� is encoded in the matrixB (eventually the load vector
F) but not in the stiffness matrixA.
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3.2. OPTIMAL CONTROL APPROACH

This approach will be used for the solution of the Neumann problem:{ −4u+ u = f in �, f ∈ L2(�)
∂u
∂ν
= g on ∂�, g ∈ L2(∂�),

(3.2)

or in the weak form:{
Findu ∈ H 1(�) such that

a�(u, ϕ) =< f, ϕ > ∀ϕ ∈ H 1(�),
(3.3)

where

a�(u, ϕ) ≡
∫
�
(gradu · gradϕ + uϕ) dx,

< f, ϕ > ≡ ∫
�
f ϕ dx + ∫

∂�
gϕ ds.

Again, let V̂ = H 1
0 (�̂). Instead of (3.3) we shall consider the following optimal

control problem: Find v ∈ H 1(�) such that

J (v) = min
v∈H1(�)

J (v),
(3.4)

whereJ (v) = 1
2
∫
�̂
|gradŷ(v)|2 dx with ŷ ≡ ŷ(v) ∈ V̂ being the solution ofthe

state problem(v ∈ H 1(�)):(
P̂ (v)

) ∫
�̂

gradŷ · gradϕ dx = a�(v, ϕ |�)− < f, ϕ |� > ∀ϕ ∈ V̂ .

From (3.4) and the definition of
(
P̂ (v)

)
we see that anyv realizing the absolute

minimum ofJ in H 1(�) solves (3.3) at the same time.
The finite element approximation of (3.4) reads as follows: Find vH ∈ 3H such that

J (vH ) = min
vH∈3H

J (vH ),
(3.5)

whereJ (vH ) = 1
2
∫
�̂
|gradŷh(vH )|2 dx with ŷh ≡ ŷh(vH ) ∈ V̂h being the solution

of { ∫
�̂

gradŷh · gradϕh dx = a�(vH , ϕh |�)− < f, ϕh |� >
∀ϕh ∈ V̂h,

(3.6)

where3H ≡ V̂H |� andV̂h, V̂H are the same as before.
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The algebraic formulation of (3.5) leads to the following quadratic program-
ming problem: Find v∗ ∈ Rd such that

J(v∗) = min
v∈Rd

J(v), (3.7)

where

J(v) = 1
2
(
A y(v), y(v)

)
Rn ,

d = diam3H andy(v) ∈ Rn is the solution of

A y(v) = B v− F̃. (3.8)

HereA denotes the stiffness matrix,F̃ is the vector representation of< f, ϕh |� >
and the elements ofB are given by

bij = a�(ψj , ϕi),
where{ϕi}ni=1, {ψj }dj=1 are basis functions of̂Vh,3H , respectively.

3.3. FICTITIOUS DOMAIN APPROACHES IN SHAPE OPTIMIZATION

Let
(
P
)

be an optimal shape design problem whose abstract form has been intro-
duced in Section 2. To make its realization more efficient, we shall use FDS’s as a
tool for the numerical realization of state problems. Thus we propose the following
approximation of

(
P
)
:

(
P̂h
)  Find�∗h ∈ Oh such that

J
(
�∗h, ûh(�

∗
h) |�∗h

) = min
�h∈Oh

J
(
�h, ûh(�h) |�h

)
,

whereOh is an approximation ofO and ûh(�h) is an approximation ofu(�),
realized by one of the previous fictitious domain techniques, used on� ≡ �h.
Here we use the symbol�h as the argument of̂uh to point out that our fictitious
domain solutiondependson the geometry of�h.

The advantage of this approach is readily seen: the state problem is always
solved on thesamedomain�̂, using thesame, fixed, regular partition of�̂ into
finite elements. Let us recall that in the case of the Lagrange multiplier approaches
we arrive at the following linear algebraic system:

(
P̂ (α)

) 
Find

(
u(α),λ(α)

) ∈ Rn × Rd such that(
A BT (α)
B(α) O

)(
u(α)
λ(α)

)
=
(

F(α)
0

)
.



GENETIC AND RANDOM SEARCH METHODS 117

As we have already mentioned, the only information on the geometry of�h ex-
pressed throughα is encoded inB andF. Just the fact thatA does not depend on
α enables us to solve

(
P̂ (α)

)
efficiently. The similar statement holds true when

the optimal control approach is used. Thus the matrixA can becomputed onceand
factorized for ever.

As mentioned in the introduction, the use of FDS’s in shape optimization gives
rise to certain difficulties which exclude the use of classical gradient type minim-
ization methods. We start with thesensitivity analysisor how the solutionu of(
P̂ (α)

)
depends on variations ofα.

When the boundary Lagrange multipliers are used, the elementsbij (α) of B(α)
are given by

bij (α) =
∫

AiAi+1

ϕj ds,

whereAiAi+1 is the side of a polygonal domain�H being an approximation of
�h ∈ Oh (�H ≡ �h when�h itself is polygonal). It is very easy to verify that if
AiAi+1 has a non-empty intersection with an interelement boundary between two
adjacent rectangles belonging tôRh whose 1-dimensional Lebesgue measure is
positive, then the mapping

α 7→ bij (α)

is notcontinuously differentiable (for details we refer to Haslinger & Neittaanmäki
1996; Dănková & Haslinger 1996; Haslinger & Klarbring 1995). Thus one can not
expect that the mappingα 7→ u(α) is differentiable. The same holds when the
optimal control approach is used. In this case the elements ofB(α) are given by∫

�h

gradψi · gradϕj dx

containing the discontinuous integrand. In both cases however, the mappingα 7→
u(α) is continuous so that the whole optimization process becomesnon-smooth,
in general. When the distributed Lagrange multipliers are used, the situation is
more involved due to the so calledlocking effect: let R̂h ≡ R̂H , i.e. the same
rectangulation is used for the construction of the spaces, approximating the solution
and the Lagrange multiplier. Then from∫

4h

µhûh dx = 0 ∀µh ∈ 3h = V̂h/4h, 4h = �̂\�h

it follows that ûh ≡ 0 not only in4h, but due to the fact that̂uh is piecewise
bilinear, this solution is identically equal to zero in a larger set4′h, where

4′h =
⋃{

T ; int T ∩4h 6= ∅
}

is the union of all rectangles from̂Rh, whose interior has a non-empty intersection
with 4h. Now, letα be such that its small perturbations do not change the set4′h.
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Then the solutionu before and after the modification of suchα remains the same
(see Haslinger, MaAıtre & Tomas 1998). This means that the mappingα 7→ u(α)
has afinite rangeand therefore it is evendiscontinuous. If the cost functional does
not depend explicitly on�, for instance, when the identification is made through a
fixed target set, then the optimization problem is of adiscrete type.

From what it has been said it follows that local optimization methods can hardly
be used.

4. Algorithms

Evolutionary algorithms are probabilistic algorithms which solve the global optim-
itization problems through modelling of organic evolution. Among them, Genetic
Algorithm (GA), Breeder Genetic Algorithm (BGA), and Modified Controlled
Random Search (MCRS) are representants we used to solve the problems intro-
duced in Section 3. As the classical GA is well known, only BGA and MCRS will
be mentioned.

4.1. OPTIMIZATION PROBLEM

The global optimization problem can be stated as follows

x∗ = arg min
{
f
(
x̃
)
, x̃ ∈ X

}
, (4.1)

whereX is an admissible search space,f : X ⊆ X1 × · · · × Xn → R is an
objective functionandf (x∗) is aglobal minimum. In constrained problems the set
of all feasible points is defined as follows:

X = {x̃ ∈ X1× · · · ×Xn, gj
(
x̃
)
> 0 ∀j ∈ {1, . . . , m}} ,

wheregj : X1 × · · · ×Xn → R are inequality constraints. UsuallyXi are in the
form of box constraints, i.eXi = 〈ai, bi〉 ⊂ R.

The restriction to minimization problems is without loss of generality, because

−max(f (x)) = min (−f (x)) .

4.2. BREEDER GENETIC ALGORITHM– BGA

The Breeder Genetic Algorithm is based on the same concept as a typical GA. The
name of BGA is derived from the selection mechanism which implements some
type of breeding. At each generation ofN elements, the bestT ·N elements are
selected, whereT is the so-calledtruncation rate, usuallyT ∈ 〈0.1,0.5〉. Indi-
viduals from this selection are randomly chosen to mate with the same probability.

The main difference between the GA and BGA is that solutions are represented
as real numbers instead of binary strings. This difference in representation of values
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leads to the need of introducing new recombination and mutation operators. We
will now briefly describe these operators.

In what follows x = (x1, . . . , xn) and y = (y1, . . . , yn) denote the parent
strings, andz = (z1, . . . , zn) denotes the offspring, where allxi, yi, zi ∈ Xi ⊂ R
andi ∈ {1, . . . , n}.

4.2.1. Recombination

There are three recombination operators.
Discrete recombination– DR

zi = xi or yi,

wherexi or yi are chosen with probability 0.5.
Extended line recombination– ELR

zi = xi + α(yi − xi),
whereα is chosen uniform randomly in the range〈−δ,1+ δ〉.
Extended intermediate recombination– EIR

zi = xi + αi(yi − xi),
whereαi is chosen uniform randomly in the range〈−δ,1+ δ〉. In both cases
usuallyδ = 0.25.

Looking at the strings of values as the points in a vector space, we can describe
the geometrical effect of the recombination operators. DR only mixes the values of
parent points and generates vertices of the hypercube defined by these points. ELR
and EIR generate new values by linear combination of the corresponding parent
values. ELR generates points on the line between the parents, while EIR generates
points inside the hypercube defined by the parents. Both ELR and EIR work with
anextentδ. Thus the hypercube where the generated points can be found is larger
than the hypercube generated by parent points.

4.2.2. Mutation

Each variablexi is selected for mutation with probabilitypm, usuallypm = 1/n.
For each variablexi we definerangei . Whenxi ∈ 〈ai, bi〉, we usually setrangei =
0.1(bi − ai).
Discrete mutation scheme– DMS

zi = xi ± rangei
k−1∑
j=1

αj · 2−j ,
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whereαj ∈ {0,1} are chosen to be equal to 1 with probability 1/k, k is an integer
calledprecision constant.
Continuous mutation scheme– CMS

zi = xi ± rangei · 2−kα
whereα is chosen uniformly from range〈0,1〉 andk is again theprecision constant.

From the geometrical point of view both mutations can generate any point in
the hypercube with the center inx defined by the points(x1 − range1, . . . , xn −
rangen) and(x1+ range1, . . . , xn + rangen). But with high probability, points in
the neighborhood ofx are generated.

For more details on the BGA see Mühlenbein & Schlierkamp-Voosen (1992).
The predictive model of BGA is described in Mühlenbein & Schlierkamp-Voosen
(1993).

4.3. MCRS ALGORITHM

The MCRS (Modified Controlled Random Search) algorithm (Křivý & Tvrdík
1995, 1996) is based on old ideas of the simplex method (Nelder & Mead 1964)
and the controlled random search (Price 1976). The MCRS algorithm starts with a
populationP of N points taken at random inX. A new trial pointx is generated
from a simplexS (a set ofn + 1 linearly independent points of a populationP in
X) by the relation

z= g− Y (x− g), (4.2)

wherex is one (randomly chosen) vertex of the simplexS, g is the center of gravity
of the remainingn vertices of the simplex andY is a multiplicative factor. The point
z may be considered as resulting from the reflection of the pointx with respect to
g.

The principal modification of the original Price’s reflection consists in random-
izing the multiplicative factorY . Instead ofY being constant, a random variable
is used in the MCRS algorithm. Several distributions ofY have been tested on
fourteen hard problems of estimation of non-linear regression parameters. It was
found that the best results were obtained withY distributed uniformly in〈0, α)
with α ranging from 4 to 8, see Ǩrivý & Tvrdík (1995).

Considering the procedureRef lection which can be formally written as

procedureRef lection(P , var z);
repeat

S := set of(n+ 1) points selected fromP at random;
z := g− Y (x− g) ;

until z ∈ X.

then the description of the MCRS algorithm is very simple:
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procedure MCRS;
beginP := population ofN randomly generated points inX,

repeat
Ref lection(P, z);
if f (z) < f (zmax) then zmax := z;

until stopping criterion is true;
end {MCRS};

zmax is the point with the largest function value from theN points currently stored.
No particular stopping criterion is defined. However, in the most of optimization

problems the stopping condition is expressed as

f (zmax)− f (zmin) 6 ε, (4.3)

wherezmin is the point with the smallest value of the objective function among all
theN points of populationP held in the memory andε is an input parameter.

Thus, the algorithm has only three input tuning parameters:
• the number of pointsN in the population;
• the value ofα defining the range ofY ;
• the value ofε for the stopping condition.
A right setting of the tuning parameters is dependent on the nature of optimiza-

tion problem to be solved. It is obvious that the higher values ofN andα, the more
thorough is the search.

The MCRS algorithm is similar to other evolutionary algorithms in several as-
pects. The reflection plays the role of the recombination like the crossover in the
genetic algorithm. The probability of selection in the MCRS is not proportional
to the fitness of a selected individual but due to discarding the worst individual in
a population and replacing it by a better new point there is some self-adaptation
tendency in the population. However, mutation is not explicitly included into the
MCRS. An attempt to include the operator of mutation into the algorithm was
made. It leads to the so-called evolutionary search algorithms (Křivý & Tvrdík
1996, 1997), which were found to be more reliable in searching thetrue global
minimum but with lower convergence rate.

No proof of convergence of the MCRS algorithm has been done yet. We suppose
that the MCRS algorithm is at least as good as the uniform random search for which
the convergence with probability one was proven, e.g., Bäck (1992) pp. 48–49. It
was found experimentally on several problems that the convergence rate of the
MCRS is much higher than the convergence rate of the uniform random search.

5. Numerical Examples

In this section we present results of three model optimal shape design problems
using FDS’s as a tool for the numerical realization of state problems. The minim-
ization itself is performed by the GA, BGA and MCRS algorithm.
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In all examples the fictitious domain̂� is the rectanglê� = (0, Lx)× (0, Ly),
which is divided into small squares with the steph, defining the rectangulation̂Rh

of �̂. The approximationOh of O is realized by domains�h whose boundaries are
piecewise second degree Bezier curves. We definenb as the number of segments
made of these curves andnc as the number of control points. An example of such a
boundary is shown in Figure 1. Each Bezier curve is defined by the initial, end and

Figure 1.

the control point. Initial and end points are denoted by small triangles and control
points by circles. Each control point moves on line between small squares, thus the
position of the control point can be expressed by a real number from the interval
< C0, C1 >, whereC0, C1 are the minimal, maximal, respectively distance of the
control point from the center(Lx/2, Ly/2) of the fictitious domain�̂.

The admissible family of domainsO is the subset of the following set

M(C0, C1) = {� ⊂ �̂ | C0 6 ‖X − (Lx/2, Ly/2)‖ 6 C1

∀X ∈ ∂�}.
To solve the discrete state problem

A x = b,

we use the conjugate gradient method. The stopping criteria for this method is
stated as follows:

‖r‖2 6 ‖b‖2ε
CG
,

wherer is the residuum andε
CG
> 0 is a small real constant.

EXAMPLE 1 (the boundary Lagrange multiplier technique).
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LetLx = Ly = 8, h = 1/2, ε
CG
= 10−4,

O = {� ∈M(1.4,2.9) | meas� = 4π
}

be the admissible family of domains containing the origin inside and satisfying the
constant volume constraint. On any� ∈ O we consider the state problem

(
P (�)

) { −4u = 4 in �, � ∈ O

u = 0 on ∂�.

Further let

J1(�) = −4
∫
�
u(�) dx

be the cost functional. We define the optimal shape design problem

(
P1
) {

Find�∗ ∈ O such that

J1
(
�∗
)
6 J1

(
�
) ∀� ∈ O.

Problem
(
P1
)

is one of the classical shape optimization problems: namely to find
a shape of the cross section of a shaft made of a homogenous material in order to
maximize its torsional rigidity. The result is known: the optimal shape is realized
by a circle.

Oh is realized by Bezier curves withnc = 6. Thus the nodal vector representing
the boundary Lagrange multiplier has six components. The optimal shape is shown
in Figure 2 (realized by MCRS after 1000 evaluations of the cost functional). The
control points are the object of minimization.

EXAMPLE 2 (the distributed Lagrange multiplier technique).
The admissible family of domains is defined by

O = {� ∈M(0.5,1.5) | meas� = 1.5342
}

andLx = Ly = 3, h = 3/16,ε
CG
= 10−5. The state problem is defined by

(
P (�)

) { −4u = f in �, � ∈ O

u = 0 on ∂�,

where

f = −4uz
with

uz =
(
x − Lx2 + c

)(
α(y)− x

) (
y − Ly2 + c

) (
Ly
2 + c − y

)
,
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Figure 2.

α(y) = 3
8sin

(
πy
2c

)
+ Lx2 + c,

y = y − Ly2 + c, c = 0.5625.

It can be easily verified thatuz is the solution of
(
P (�̃)

)
, where�̃ ∈ O is

surrounded by the zero level set ofuz (curved rectangle whose one curved side is
represented by the graph of the functionx = α(y)). We define the optimal shape
design problem as follows:

(
P2
) {

Find�∗ ∈ O such that

J2
(
�∗
)
6 J2

(
�
) ∀� ∈ O,

where

J2(�) =
∫
�
(u(�)− uz)2dx.

Thus�̃ is one of solutions to
(
P2
)
. Distributed Lagrange multipliers are used for

the realization of the state problem. As before, piecewise bilinear functions are
used for constructinĝVh and3H with H = 2h = 3/8, i.e. the partitionR̂H of
�̂ into squares defining the space3H is two times coarser as this one used in the
definition ofV̂h.

Oh is realized by Bezier curves withnc = 4. In this case the position of both
control and initial points is optimized. An example of the optimal shape is shown
in Figure 3 (realized by GA with exponential scaling and uniform crossover after
1000 evaluations of the cost functional).
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Figure 3.

As mentioned in Section 3, the distributed Lagrange multiplier approach ex-
hibits the locking effect yielding a discrete type optimization problem. We shall
illustrate this phenomenon by drawing the graph of the cost functionalJ2 assumed
to be a function of two design variables{3,4}, keeping the rest fixed. We take
R̂h = R̂H .

The Figure 4 displays the graph. The consequence of the locking effect de-
scribed in Section 3 is seen well: the function is stairwise.

Figure 4.
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EXAMPLE 3 (the optimal control approach).
LetLx = Ly = 8, h = 1/2, ε

CG
= 10−5,

O = {� ∈M(1.0,2.5) | meas� = 2π
}
.

On any� ∈ O we consider the Neumann problem:

(
P (�)

)  −4u(�)+ u(�) = f in �, � ∈ O,

∂u(�)
∂ν

= g on ∂�,

where

f = −4uz + uz, g = ∂uz
∂ν
,

uz = 4−
(
x − Lx2

)2− 4
(
y − Ly2

)2

and the normal derivative ofuz is assumed on∂�̃ given by the ellipse(
x − Lx2

)2

4
+
(
y − Ly

2

)2

= 1. (5.1)

We define the optimal shape design problem

(
P3
) {

Find�∗ ∈ O such that

J3
(
�∗
)
6 J3

(
�
) ∀� ∈ O,

where

J3(�) =
∫
�
(u(�)− uz)2 dx.

It is easy to see that one of solutions to
(
P3
)

is the domain�̃ being the interior of
(5.1). State problem

(
P (�)

)
was solved by using the optimal control approach. As

before, piecewise bilinear functions were used for constructing the spacesV̂h,3H

with H = h = 1/2, i.e. we use the same rectangulation for both spaces.
In this casenc = 8. An example of the optimal shape is shown in Figure 5

(realized by BGA after 1000 evaluations of the cost functional) and the control
points are the object of minimization.

5.1. COMPARISON OF ALGORITHMS

In this section we describe and compare the results obtained. We run the following
optimization algorithms:
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Figure 5.

MCRS – modified controlled random search algorithm (described in Section 4.3);

BGA – breeder genetic algorithm (described in Section 4.2);

GAbu – GA with truncation selection and uniform crossover;

GAb2 – GA with truncation selection and one-point crossover;

GAeu – GA with exponential selection and uniform crossover;

GAe2 – GA with exponential selection and one-point crossover.

Optimization was run several times for each example and each type of op-
timization algorithm. The population size for MCRS, all the variants of genetic
algorithms was equal ton2, 20, respectively, wheren is the number of optimized
variables being the argument of the cost function. The value ofα defining the range
of Y in the MCRS was equal to 4. The parameters for BGA were chosen as follows:

crossover probabilitypc = 0.8,
mutation probabilitypm = 1/n,
crossover extentδ = 0.25,
precision constantk = 20,
rangei = 1.0.

In the case of the classical GA the following parameters were used:
crossover probabilitypc = 0.6, mutation probabilitypm = 0.004,
truncation rate (when used) 0.3,
elitism = 1 (the best individual is copied automatically into the next population)
The stopping criterion was in all the cases the same: the number of function

evaluations equal to 1000. Figure 6 shows a typical minimization history for Ex-
ample 3 and BGA. In Figure 7 the average of these histories is shown.
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Figure 6.

Figure 7.

In order to evaluate the convergence of the algorithms, three typical function
values (levels) were chosen. For each algorithm and each function level the results
are summarized in Tables 1, 2, 3.

The meaning of the columns is the following:

Ji(i = 1,2,3) – the function level;
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Table 1.

−J1 MCRS BGA GAbu
min max mean min max mean min max mean

88.20 480 730 560 291 – 465 349 – 755

88.25 500 830 680 320 – 552 465 – –

88.30 680 – 920 320 – 784 465 – –

−J1 GAb2 GAe2 GAeu
min max mean min max mean min max mean

88.20 153 – 590 204 – – 59 – –

88.25 153 – 590 262 – – 59 – –

88.30 153 – – – – – 59 – –

Table 2.

J2 ∗ (10−6) MCRS BGA GAbu
min max mean min max mean min max mean

10 290 740 540 134 324 210 286 780 571

7 410 900 740 172 894 324 419 – –

5 770 – – 495 – 894 – – –

J2 ∗ (10−6) GAb2 GAe2 GAeu
min max mean min max mean min max mean

10 77 – – 457 – – 134 – 495

7 229 – – 571 – – 229 – 685

5 – – – 799 – – 438 – –

min(max) – minimal (maximal) number of function evaluations necessary to achieve
the required level in all runs realized by the particular algorithm;

mean – the number of function evaluations necessary to achieve the required level
of the average minimization history

If the level was not achieved in 1000 function evaluations, there is a dash
in the corresponding position. Table 1, (2, 3) corresponds to Example 1, (2, 3),
respectively.

The max column is interesting: if there are numeral characters there, then the
required level was achieved in any run of the algorithm. On the contrary the min
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Table 3.

J3 MCRS BGA GAbu
min max mean min max mean min max mean

0.4 140 – 920 20 172 115 37 964 325

0.2 770 – – 115 362 191 118 – –

0.1 – – – 172 – 419 640 – –

J3 GAb2 GAe2 GAeu
min max mean min max mean min max mean

0.4 115 514 267 190 – 910 118 – 784

0.2 286 – 837 – – – 982 – –

0.1 533 – – – – – – – –

column in Table 1 documents that one run of GAeu accidentally led to a better value
then 88.3 after only 59 function evaluations.

Taking into account smoothness of the minimized functions, our examples can
be listed as follows (starting from the most regular): Ex. 2, 1, 3. It is known that
the MCRS gives better results when applied to smooth functions. This is seen
from Tables 1 and 2 while from Table 3 we see that BGA is more successful than
MCRS likely due to lack of smoothness ofJ3. Looking at Tables 1, 2 we see that
also here BGA worked very well using considerably fewer function evaluations
than MCRS. From this point of view we may conclude that BGA was the most
successful method for our class of optimization problems.
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